Reconstructing WKB from topological recursion
نویسندگان
چکیده
منابع مشابه
Topological recursion and mirror curves
We study the constant contributions to the free energies obtained through the topological recursion applied to the complex curves mirror to toric Calabi-Yau threefolds. We show that the recursion reproduces precisely the corresponding Gromov-Witten invariants, which can be encoded in powers of the MacMahon function. As a result, we extend the scope of the “remodeling conjecture” to the full fre...
متن کاملQuantum Curves and Topological Recursion
This is a survey article describing the relationship between quantum curves and topological recursion. A quantum curve is a Schrödinger operator-like noncommutative analogue of a plane curve which encodes (quantum) enumerative invariants in a new and interesting way. The Schrödinger operator annihilates a wave function which can be constructed using the WKB method, and conjecturally constructed...
متن کاملRecursion Relations in Semirigid Topological Gravity
A field theoretical realization of topological gravity is discussed in the semirigid geometry context. In particular, its topological nature is given by the relation between deRham cohomology and equivariant BRST cohomology and the fact that all but one of the physical operators are BRST-exact. The puncture equation and the dilaton equation of pure topological gravity are reproduced, following ...
متن کاملTopological Recursion for Irregular Spectral Curves
We study topological recursion on the irregular spectral curve xy2 − xy + 1 = 0, which produces a weighted count of dessins d’enfant. This analysis is then applied to topological recursion on the spectral curve xy2 = 1, which takes the place of the Airy curve x = y2 to describe asymptotic behaviour of enumerative problems associated to irregular spectral curves. In particular, we calculate all ...
متن کاملA short overview of the ”Topological recursion”
This is the long version of the ICM2014 proceedings. It consists in a short overview of the ”topological recursion”, a relation appearing in the asymptotic expansion of many integrable systems and in enumerative problems. We recall how computing large size asymptotics in random matrices, has allowed to discover some fascinating and ubiquitous geometric invariants. Specializations of this method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de l’École polytechnique — Mathématiques
سال: 2017
ISSN: 2270-518X
DOI: 10.5802/jep.58